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Abstract 

 
The free space electromagnetic field propagation in the fractional Fourier 
transform approach is used to show a form pedagogically elaborated for Fresnel 
and Fraunhofer diffraction concepts with the help of the curvature transparency 
and electromagnetic field transfer operators. 
 
 
I. INTRODUCTION 
 
One of the concepts of more importance in difractive optics maybe the referred to 
the propagation of electromagnetic waves in the free space; in particular in the 
mathematical formulation of the problem have been used two standard criteria: 
the corresponding to the paraxial approach which is perfectly developed by 
Goodman[1] and the second make reference to the metaxial approach, which was 
proposed and developed by Bonnet[2].  
An important note is connected with the conceptual appropriation of the Fresnel 
and Fraunhofer diffraction phenomena by the students; because they have big 
difficulties in the particular treatment of the problems referred to the propagation 
in the free space.  
In recent years a new tool for the description of the propagation appears in the 
context of the difractive optics and the propagation of electromagnetic field, 
which is known as the fractional Fourier transform. The present work uses this 
mathematical transformation with the objective of proposing a new pedagogic 
method through two basic operators, adjusting the theoretical construction way by 
the students and therefore improving the teaching and the correct 
conceptualisation of the diffraction phenomenon.  
 
 
 
 
 



II. THE FRESNEL DIFRACTION BETWEEN PLANE EMITTERS 
AND PLANE DETECTORS.  

 
When a planar object is illuminated with an plane wave, the field complex 
amplitude over the plane detector ( )′rF

rU  is obtain by Fresnel diffraction[1]: 
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The time origin on P is shifted with respect to the time origin on A, then the factor 







λ
π− Diexp 2  has been neglected.  

Using the definition of the fractional Fourier transform by Namias[3], (1) becomes: 
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Now, the field complex amplitude over the plane detector ( )′rF

rU is proportional to 
the fractional Fourier transform of order α of the field complex amplitude of the 
planar object U ; this result is according to obtained by Pellat-Finet( )rA

r [4].  
 
III. THE FRESNEL DIFRACTION BETWEEN SPHERICAL 

EMITTERS AND SPHERICAL DETECTORS.  
 
In this case the illumination is with divergent spherical wave of radius RA and 
observation on convex spherical detector of radius RF. 
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Fig. 1. Fresnel diffraction of the divergent spherical surface A observed on the convex spherical 

surface F. 
       
In this case the amplitude distribution on the spherical detector in terms of the 
amplitude distribution of the spherical emitter is: 
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If the illumination is with convergent spherical wave of radius RA and observation 
is made over concave spherical detector of radius RF, RA and RF in (3) should be 
changed for -RA and -RF respectively. 
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Fig. 2. Fresnel diffraction of the convergent spherical surface A observed on the concave spherical 

surface F. 
 
These results are according to obtained by Ozaktas and Mendlovic[5]. 
 
IV.   TRANSFORMATION OPERATORS[2] 

 
4.1. Curvature Transparency Operator. 
 
If   then (3) writes:  00 =→ αandD
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Which corresponds to a transparency since modulus of transfer is equal to 1. 
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Fig. 3. Fresnel diffraction of the spherical surface A observed on the spherical surface F when D 
tends to zero. 

 
Therefore the step of A to F  can express by means of:  
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This interesting result can be interpreted this way:  
“The field transfer of a spherical emitter A to a tangent sphere F is expressed by 
a factor of quadratic phase depending on the respective curvature radio of A and 
F, of agreement with the equation (5)”.  
 
4.2. Electromagnetic Field Transfer Operator.  
 

If 
2
π

α = , Then (3) writes:  
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If , we obtain the Fourier sphereDRF −= [2]:  
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Fig. 4. Fraunhofer diffraction of the spherical emitter A observed on spherical surface F. F is 

called the Fourier sphere of A. 
 
As the field amplitude in F is the Fourier standard transform of the field amplitude 
in A; the sphere F is denominated "sphere of Fourier of A", corresponding 
physically to the diffraction of Fraunhofer. This important conclusion can be 
expressed in this way:  
“Be A, a spherical emitter with radio RA = D and  F the sphere whose radio is RF 
= -D, centred on A. The field transfer of A to F corresponds to the Fraunhofer 
diffraction, it is expressed mathematically by means of the equation (6).”  
It is important to write down that these results are completed for propagation of 
waves in the free space, supplementing the results obtained previously where lens 
are used to reach the fractional Fourier transform[6].  
 
 
V. THE COMPOSITION OF OPERATORS. 
 
To show the way to act of the two operators described in this work, we proceed to 
apply them to the configuration of the figure 5. 
In this case it is looked for obtain the amplitude distribution of the 
electromagnetic field on the spherical detector of radio RF

 produced by the 
electromagnetic field amplitude of the spherical emitter of radio RA.  
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Fig. 5. Determination of the field transfer A from to F. 

 
Step I 
 
Curvature transparency operator is applied among the spherical surfaces A and 
A•; then (4) writes:  
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With  DRA =•

 
Step II 
 
Electromagnetic field transfer operator is applied from A•

 to F•; then (6) becomes:  
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Step III 
Transfer from F•

 to F. Curvature transparency operator is applied among F•
  and 

F; then (4) writes: 
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With    DRF −=•

 
Finally, the total transfer can be easily written as: 
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VI. CONCLUSIONS  
 
It has been shown as the propagation of electromagnetic waves you can express 
through single two operators denominated curvature transparency and 
electromagnetic field transfer (Fourier sphere). This result facilitates the 
proposition of an alternative method for the solution of problems in difractive 
optics, as well as allows obtaining a better handling on behalf of the students of 
the physical interpretation of the electromagnetic field propagation and the 
Fresnel and Fraunhofer diffraction.  
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