MODIFICACIÓN DE LAS PROPIEDADES ELÉCTRICAS DE CAPAS SUPERCONDUCTORAS DE BISr(Pb)CaCuO MEDIANTE IRRADIACIÓN CON LUZ LÁSER INFRARROJA.

F.A. Pérez, L.F. Castro, E. Baca, E. Solarte Universidad del Valle, AA 25360 Cali, Colombia

Resumen

Capas superconductoras de BiSr(Pb)CaCuO fueron tratadas con luz láser de 10.6 µm bajo diferentes condiciones de presión de oxígeno y tiempo de exposición. El tratamiento produjo modificaciones en las características eléctricas. Se observaron efectos de variación en la Temperatura Crítica, en la resistencia del estado normal y también la recuperación y el mejoramiento de estas propiedades posterior a tratamiento en atmósfera de oxígeno. Las capas superconductoras fueron producidas en el Laboratorio de Películas Delgadas de la Universidad del Valle.

INTRODUCCION

El interés en los superconductores de alta temperatura critica (SATC), está motivado por sus aplicaciones potenciales, esto puede hacerse, por la facilidad que existe en la actualidad para conseguir temperaturas hasta la del nitrógeno líquido con equipos simples y económicos. Las aplicaciones potenciales incluyen equipos de microondas, alambres superconductores y magnetómetros SQUID para uso medico y científico. Este interés motiva simultáneamente la investigación en la dirección de obtener mejores y más eficientes métodos de producción de estos materiales. La aplicación de láseres en la producción de materiales superconductores se ha dirigido principalmente en la dirección de aprovechar los efectos de ablación [1] para evaporar material superconductor de un blanco y depositarlo sobre substratos escogidos. En este sentido se han realizado notables avances, que han originado una técnica comercial de producción de estos materiales. En nuestro laboratorio encontramos [2] que la aplicación de radiación láser infrarroja (10.6 □ m) procedente de un laser de CO₂, produce el mejoramiento de la temperatura crítica de capas suprconductoras de BSCCO, cuando son irradiadas en atmosfera ambiente. Continuamos esta línea de trabajo con el propósito de buscar un procedimiento de tratamiento de las muestras superconductoras, que permita mejorar el proceso de fabricación, en especial en lo relacionado a una disminución del timepo de recocido en atmósfera de oxígeno. Dado que la interacción del láser con la superficie tiene efectos sobre su morfología y la estructura del material [3], se realizaron también estudios morfológicos utilizando la microscopía de fuerza atómica (AFM), los resultados de este último estudio se reportan en otro trabajo[4].

PROCEDIMIENTO EXPERIMENTAL

Para poder estudiar el efecto de la radiación láser sobre películas superconductoras irradiadas en atmósferas controladas, se diseñó y montó un sistema de irradiación conformado por una cámara de vacío, un sistema óptico para direccionamiento del haz láser

y un portamuestras que permita posicionar la muestra dentrodel sistema de vacío, orientarla con relación al haz de radiación y medir las temperaturas alcanzadas durante el proceso de de irradiación con el láser de CO₂. El sistema diseñado se describe detalladamente en otros trabajos [5, 6] y se muestra esquemáticamente en la Figura 1.

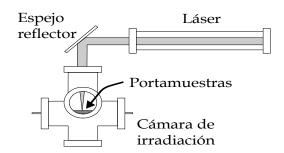


Figura 1. Esquema del sistema de irradiación de las muestras.

La radiación láser infrarroja sale de resonador horizontalmente, se refleja 90° en un espejo plano, entra verticalmente a la cámara de irradiación a través de una lente de ZnSe que la enfoca, e incide sobre la muestra por la parte superior. El haz puede irradiar enfocado o nó, mediante la utilización de una extensión, que permite variar la distancia entre la lente y la muestra.

Las muestras gruesas de BiSr(Pb)CaCuO fueron fabricadas sobre substratos de MgO siguiendo la técnica de Fundido y recocido desarrollada por el grupo de Películas Delgadas de la Universidad del Valle[7]. Se realizó la caraterización electríca de estas muestras utilizando la técnica de cuatro puntas en un crióstato de He, que permite descender hasta 15 K. Las muestras caracterizadas electrícamente fuero sometidas a estudio morfológico mediante AFM y posteriormente a una serie de irradiaciones con las características indicadas en la Tabla 1. Las muestras irradiadas fueron nuevamente caracterizadas eléctrica y morfológicamente.

Tabla 1. Condiciones de las tres irradiaciones efectuadas a una muestra de Bi₂Sr_{1.4}(Pb)Ca_{1.7}Y_{0.3}Cu₃O₁₀/MgO .

		Irradiación			
		1	2	3	4
Temperatura	[°C]	198	195	210	180
Potencia del láser	[W]	1,5	1,4	2,0	1,0
Tiempo de exposición	e [min]	10	10	20	10
Presión de O ₂	[Torr]	10 ⁻⁵	10 ⁻⁴	10^{-4}	760

RESULTADOS Y DISCUSION

En la Figura 2 se presentan los resultados de la caracterización eléctrica mediante las curvas de resistencia en función de la temperatura, para los distintos procesos de irradiación indicados en la Tabla 1. Se observa que la irradiación a bajas presiones, vacío (10⁻⁵ Torr) y

bajo un ligero aumento del contenido de oxígeno (10^{-4} Torr), correspondientes al primera y la segunda irradiación, producen un corrimiento de la temperatura crítica, T_C , hacia la región de bajas temperaturas. El incremento del tiempo de irradiación (tercera irradiación) corre aún más la temperatura crítica hasta un valor de 57.8 K.

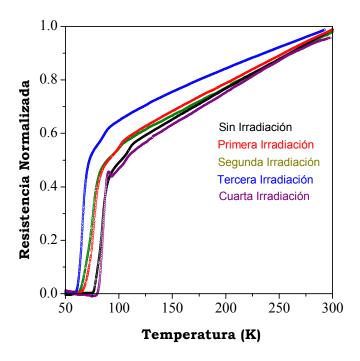


Figura 2. Resultados obtenidos de la caracterización eléctrica de una película gruesa de BiSr(Pb)CaCuO antes de la irradiación y después de la cada irradiación.

Las muestras conservan su caracter superconductor aún cuando son irradiadas bajo condiciones de baja presión. La película antes de la irradiación presenta una T_C de 73,1K; en las tres primeras irradiaciones disminuye progresivamente hasta 57.8 K y finalmente en la última irradiación aumenta (57,8K \Rightarrow 78,9K), alcanzando un valor superior al de la película sin irradiación.

En la Figura 3 se presenta los resultados de la modificación de la T_C durante todo este proceso. De estas gráficas se observa que la T_C se modifica ostensiblemente con las irradiaciones, disminuyendo para el caso de irradiaciones producidas a baja presión y recuperando sus propiedades al ser irradiada en atmósfera de oxígeno.

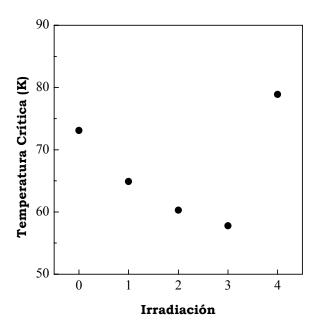


Figura 3. Resultados obtenidos de la variación de la temperatura critica de una película gruesa de BiSr(Pb)CaCuO antes de la irradiación y después de la cada irradiación.

Se observa que una variable física correlacionada con este comportamiento podría ser la presión de oxígeno dentro de la cámara durante la irradiación. Obsérvese que, las tres primeras irradiaciones ocurrieron a bajas presiones de oxígeno y la última se realizó a alta presión. Un efecto similar fue observado por Bastidas [8] para películas gruesas de BSCCO/MgO para lo cual sugirió que el fenómeno observado tenía relación con la desoxigenación de las muestras cuando se calientan a bajas presiones de oxígeno y la oxigenación de las mismas cuando se calientan a altas presiones. Teniendo en cuenta estos resultados se puede suponer que esencialmente esta pasando lo mismo.

CONCLUSIONES

La caracterización eléctrica obtenida mediante las curvas de Resistencia Normalizada contra Temperatura, muestra que las propiedades superconductoras de las películas gruesas de $Bi_2Sr_{1,4}(Pb)Ca_{1,7}Y_{0,3}Cu_3O_{10}/MgO$, son fuertemente afectadas por la radiación láser de $10,6\mu m$. Más precisamente, para todas las películas se encontró un disminución en la Temperatura Crítica, T_C cuando se irradian a bajas presiones de O_2 (10^{-4} - 10^{-5} Torr), y un mejoramiento de la T_C e incluso por encima del valor inicial cuando se irradian a altas presiones de O_2 (10^3 Torr). Este efecto puede atribuirse a la desoxigenación de las muestras cuando se irradia a bajas presiones de O_2 y también una oxigenación de las muestras a altas presiones.

AGRADECIMIENTOS

Este trabajo fue realizado con el apoyo de la Universidad del Valle, bajo el proyecto 1106-05-10107 aprobado por Colciencias.

REFERENCIAS

- [1] J.S. Horwitz et al., Pulsed laser deposition as a materials research tool, Applied Surface Science (127-129)1-4 (1998) pp. 507-513
- [2] A. E. Bastidas, "Construcción de un laser infrarrojo de potencia aplicable a las tecnologías de fabricación y de modificación de materiales superconductores", Tesis Magister en Ciencias Físicas, Cali, 1996.
- [3] I. Kawayama, J.J. Dubowski, H. Nishikawa and T. Kawai, Modification of cleaved surfaces of Bi₂Sr₂CaCu₂O₈ single crystals induced by ArF excimer laser irradiation, Applied Surface Science (143)1-4 (1999) pp. 313-318
- [4] F.A. Pérez, L.F. Castro, E. Baca, E. Solarte "MORFOLOGÍA DE LA SUPERFICIE DE PELÍCULAS DELGADAS DE YBaCuO Y DE HoBaCuO Y DE CAPAS SUPERCONDUCTORAS DE BiSr(Pb)CaYCuO TRATADAS MEDIANTE IRRADIACIÓN CON LUZ LÁSER INFRARROJA" VII Encuentro Nacional de Optica, Armenia 2000.
- [5] F.A. Pérez, L.F. Castro, E. Baca, E. Solarte "EFECTOS DE LA IRRADIACIÓN CON LUZ LÁSER INFRARROJA EN LAS PROPIEDADES DE PELÍCULAS SUPERCONDUCTORAS DE YBaCuO" VII Encuentro Nacional de Optica, Armenia 2000.
- [6] F. A. Pérez, Tesis de Magister, Universidad del Valle, Cali, 2000.
- [7] E. Bacca, G. Bolaños, M. Chacón, M.E. Gómez y P. Prieto. "Superconductividad y comportamiento aislante-metal en películas gruesas de Bi₂Sr₂Ca_{1-x}Y_xCu₂O_{8-*}"; Anales XV Congreso Nacional de Física, Ed. por M.E. Gómez, Centro de Publicaciones de Ciencias, Universidad del Valle. Pags. 85-89 (1993).
- [8] A. E. Bastidas, "Construcción de un laser infrarrojo de potencia aplicable a las tecnologías de fabricación y de modificación de materiales superconductores", Tesis Magister en Ciencias Físicas, Cali, 1996.