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Abstract 
 

The intensity distribution at the exit of a Young-Michelson interferometer is analysed on 
the Fourier domain. The analysis shows that two numbers are necessary for describing 
properly the variation of the visibility of the interferogram fringes. One of them is the 
complex degree of spatial coherence, which describes the correlation between the 
contributions from the Young’s slits. The second number, which is independent from the 
first but also has a spatial meaning, describes the correlation between the Young’s 
interferograms reflected by the mirrors of the compensated Michelson interferometer. 
 
 
1.  INTRODUCTION 

 
It has long been recognised that the term coherence plays a fundamental role in optics, 
where it is used to denote the correlation properties to different orders of the optical field. 
It is generally accepted that complete coherence requires significant correlation values to 
all orders [1,2]. 
 
Observation of higher-order coherence properties, which are described by correlations of 
higher order, usually requires refined experimental systems. For example, in 1955 
Hanbury Brown and Twiss performed a photon correlation experiment described by a 
quartic correlation [1,2]. In their experiment the correlation was between the 
photocurrents produced by intensity patterns collected by two different detectors.  
 
Spatial coherence properties revealed by a simple Young’s experiment are referred as 
second order spatial coherence [2], which describes the tendency of two values of the 
optical field at distantly separated points to take on correlated values [1]. Its basic 
quantity is the complex degree of spatial coherence [3]. On the other hand, the fringe 
visibility of a Michelson’s interference pattern is related to the temporal coherence 
properties of the optical field [3]. In a compensated Michelson interferometer the optical 
path length difference between the arms is smaller than the coherence length of the 
optical field, so that high contrast fringes are generated at the exit of the interferometer. 
 
We show in this paper that if an adequate Young slit pair is attached at the entrance of a 
compensated Michelson interferometer, a reduction in the visibility of the Michelson´s 
pattern can be observed. Furthermore, this visibility is different from that of the Young’s 
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pattern. As a consequence, two numbers are necessary for describing properly the 
visibility of the fringe patterns observed at the exit of a Young-Michelson interferometer. 
One of them is the complex degree of spatial coherence, which describes the correlation 
between the contributions from the Young’s slits. The second number, which is 
independent from the first one but also has a spatial meaning, describes the correlation 
between the Young’s interferograms reflected by the mirrors of the compensated 
Michelson interferometer, that is, the correlation between optical fields that contain a 
further correlation term. In this sense, this device can provide more precise information 
about the structure of the spatial coherence of the optical field that illumines the whole 
system. 
 
 

2. BASIC  THEORY 
 

Figure 1 depicts the experimental set-up we have used, a cascade of a Young slit pair and 
a compensated Michelson interferometer (i.e., the optical path lengths of the two arms 
differ by less than the coherence length of the optical field). With this system, a far field 
Young interferogram is reflected at both mirrors of the Michelson interferometer. The 
reflected interferograms superimpose at a CCD sensor, located at the exit of the device, 
which records the output intensity distribution. Tilting one of the mirrors of the 
Michelson interferometer, say M2, introduces relative displacements between the 
superimposed interferograms, allowing us to observe finer spatial coherence properties of 
the optical field with which we are concerned. 
 

 
 
 

Fig. 1: Experimental set-up of a Young-Michelson interferometer 
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The intensity distribution recorded by the CCD sensor is determined by the 
autocorrelation of the amplitude distribution of the optical field there [3]:  

, where ( ) (, , ;I x y W x y x y= ),

)
 

( ) ( ) ( 22112211 ,,,;, yxVyxVyxyxW ∗= ,    (1) 
 
where the asterisk denotes complex conjugate and  symbolises the correlation 
operation. The time-varying complex amplitude V x , where 

, j=1,2, is the amplitude of the contribution at the CCD produced by reflection by 
the j-th mirror of the Michelson interferometer. Thus,  
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with  the real part. The correlation eℜ ( ) ( )1 1 2 2, , ,j jA x y A x y∗  can be determined by using 

Zernike’s formula in the Fraunhofer domain (far field approach) [3]. Specifically, 
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where λ is the wavelength, z the optical path length for the propagation from the Young 
slit pair to the CCD sensor,  the intensity across the slits (constant, uniform 

illumination being assumed), and 
0I

2k π
λ

= . The functions  and t  

represent, respectively, the complex degree of spatial coherence [3] and the transmittance 
of the Young’s slit pair. 

(0 1 2 1 2;µ ξ ξ η η− − ) ( ),ξ η

 
Let us assume that the slits are identical and of rectangular shape, with sides a along the 

-axis and b>a along the η -axis, so that t  inside the slits and zero outside them. 
Their centres are located on the ξ -axis and are separated a distance c.  
ξ ( ),ξ η =1

 
It is possible to prepare the experiment in such a way that 
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i.e. the value 1 is taken when the correlated radiators are both inside the same slit and 
some complex value , with µ 0  and ϕ  constant, when they are located inside 
different slits. For the sake of simplicity and without lack of generality we assume that 

. 

1µ≤ < 12

12 0ϕ =

 
Under the above conditions, Eq. (3) yields  
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with ( ) ( )

πx
πxsinπxsinc =  [4]. A similar formula is obtained for ( ) ( )222112 ,, yxAyxA ∗ , but in 

this case a phase factor should be introduced into the integrand of the Zernike’s formula 
to describe properly the relative displacement of the interferograms at the CCD sensor, 
with the result 
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where  denotes the relative displacement between the interferograms at the CCD 
sensor plane. 

( ,X Y

 
It is useful to introduce the normalised cross-correlation [5] 
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where  is the maximum value of (max

jI ) )( ) ( ) (, , ,j j j j j j j j jI x y A x y A x y∗=

( )1 1 1,I x y ( )2 2 2,I x y

, , j=1,2, which is 

the intensity distribution of the Young interferogram reflected by the j-th mirror at the 
CCD sensor. The intensity distributions  and  can be expressed as 
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The normalised cross-correlation (6) describes the degree of correlation between the 
contributions reflected by the mirrors of the Michelson interferometer. Indeed, in the far 
field approach it takes the form 
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It is reasonable to assume that ν  and α  are constant for a fixed slit pair and for a 
specific position of the tilted mirror in our experiment. As before, we assume α  for 
the sake of simplicity and without lack of generality. Under this condition and taking into 
account Eq. (6), the last term of Eq. (2) in the far field approach can be written as 
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Furthermore, the intensity distribution recorded by the CCD sensor can be obtained from 
Eqs. (2), (4), (5) and (8) as 
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From Eq. (9) we infer that ν  is a quantity with spatial meaning but different 
from the complex degree of spatial coherence . It describes the 
correlation between the contributions from the Young’s slits. So, ν  
describes the spatial correlation of optical fields that contain a correlation term due to a 
prior Young’s interference. Furthermore, these two quantities are necessary to describe 
properly the intensity distribution of the interferograms. 

( 1 1 2 2, ; ,x y x y

(0 1 2 1 2;µ ξ ξ η η− −

( )1 1 2 2, ; ,x y x y

 
 

3. SIMULATIONS,  EXPERIMENTAL  RESULTS  AND  DISCUSSION 
 

Figure 2 shows simulated intensity distributions of interferograms described by Eq. (9). 
They were calculated for different values of ν  with 1µ =  and X=Y. The loss of 
visibility of the Michelson fringes with the decrease of ν  is apparent whereas the high 
visibility of the Young fringes remains. 
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Fourier analysis of the interferograms was applied to perform the evaluation of µ  and 
ν  separately. The Fourier spectrum of the interferogram intensity distributions is given 
by            
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          1ν =   0.75ν =        0.50ν =   0.25ν =         0ν =  

Fig. 2: Simulated intensity distributions of interferograms at the exit of a 
Young-Michelson interferometer 

 
 
where ⊗ denotes convolution and the functions that appear in Eq. (10) are defined as 
follows [4]: 
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z
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 . It is useful to expand this latter 

function in a series before the calculation of its Fourier spectrum. Thus, we have [6] 
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where the coefficients  are given by nβ 0 1 2 3 4
1 1 3 151 , , , , , ...
2 8 48 384
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Fourier spectrum of this expression is thus       
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From Eqs. (10) to (12) we conclude that  will consists of a set of peaks, distributed 
as follows (Fig.3): 

( ,I ξ η%

 
• The first two terms in Eq. (10) correspond to the Young interferograms, without 

regard for the modulation by Michelson fringes. They consist of three peaks with 
pyramidal profiles, one of them at the origin of the coordinates  and the other 
two symmetrically located on the ξ -axis at a distance c from the origin. Note that the 
positions of corresponding peaks in both terms coincide and that the lateral peak 
height is proportional to 

( ,ξ η

µ . 
 
• The third term in Eq. (10) provides the information about the modulation of the 

Young interferograms by Michelson fringes. This term describes two sets of peaks 
with pyramidal profiles, given by the convolution of the rect functions. These sets are 
located symmetrically with respect to the origin of coordinates at (  and  
respectively, and their peaks are distributed according to . 

),X Y ( ),X Y− −

( )H ξ

 
Each set has a principal peak, given by the first delta function of . Its height 
provides only information about 

( )H ξ

ν . The remaining peaks are distributed 
symmetrically with respect to the principal one, but their heights decay rapidly 
because they are proportional to products of the form mν µ , with m an integer 
(Fig.3). 

 
Therefore, for measuring purposes let us consider the principal peak of one of the 
sets, say that located at ( . Its mathematical form is given by [Eq. (10)] ),X Y
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It is apparent that the height of this peak is proportional to ν . 
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m
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The height of this
peak is 
               

The height of this peak  
is proportional to | µ | 

        1ν =             0.75ν =     0.50ν =  
 

   
        0.25ν =            0ν =  
Fig. 3: Fourier spectrum modula of the simulated interferograms in Fig.2 

 summary, by looking at only two peaks of  we can obtain separate 
easurements of 

( ,I ξ η% )
µ  and ν , as it can see from Fig. 3. For the experiments we have used 

ree Young’s slit pairs with the following parameters (Fig. 4a): 

 
a 
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Fig. 4: (a) Geometrical parameters of the Young’s slit pairs. 
(b) Graph of the fringe visibility for the compensated Michelson interferometer alone 

 
• Y1 : a = 0.1 mm., b = 10 mm. ,c = 0.2 mm. 
• Y2 : a = 0.1 mm., b = 10 mm. ,c =.0.3 mm. 
• Y3 : a = 0.1 mm., b = 10 mm. ,c =.0.4 mm. 
 
A He-Ne laser was used as illumination source. Its coherence length was significantly 
greater than both the maximum value of the c parameter of the Young’s slits and the 
optical path difference introduced by tilting the mirror of the Michelson’s interferometer. 
This condition was assured by determining the visibility curve of the fringe patterns 
generated by the compensated Michelson interferometer alone (Fig. 4b). The visibility 
decay occurs at the level of a percent. Therefore, the effects of temporal coherence can be 
neglected by using this interferometer. 
 
Figure 5 shows the intensity distribution of an experimental interferogram and the 
numerically calculated modulus of its Fourier spectrum respectively as an example of the 
experimental results we have obtained. 
 

  

The height of this 
peak is proportional

a     b 
Fig. 5: (a) Intensity distribution of an experimental interferogram. (b) Modulus of the calculated Fourier 

spectrum of distribution in (a) 
The height of this peak 
is proportional to | µ | 
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Table 1 shows the experimental results for µ  and ν  we have obtained by using the 
three Young’s slit pairs under several optical path length (OPL) differences, 
corresponding to different tilt angles of the mirror of the Michelson’s interferometer [5]. 
 

TABLE 1: Experimental results for µ  and ν  

Young’s slit pair Y1 Young’s slit pair Y2 Young’s slit pair Y3 OPL* difference 
[mm] µ  ν  µ  ν  µ  ν  
0,03 0,85 0,53 0,89 0,53 0,75 0,44 
0,05 0,85 0,50 0,84 0,50 0,75 0,42 
0,07 0,77 0,44 0,81 0,45 0,66 0,38 
0,09 0,74 0,41 0,88 0,45 0,66 0,36 
0,11 0,85 0,45 0,87 0,47 0,73 0,42 
0,13 0,83 0,44 0,87 0,39 0,74 0,38 

* Optical Path Length. The OPL differences were introduced by different tilt angles of 
the mirror of the Michelson’s interferometer. For all measurements an uncertainty of ± 
0,01 must be added. 
 
Figure 6 shows the dependency of the parameters µ  and ν  with respect to the OPL 
differences for each Young’s slit pair. The curves are based on the data in Table 1. 
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Fig. 6: Graphs of µ  and ν  vs OPL difference for each Young’s slit pair:  (a) Y1,  (b) Y2, and (c) Y3. 
 

As expected, µ  exhibits a high value with small variations in all cases; ν , however, 
decays with an appreciable slope as the OPL difference increases, remaining always 
smaller than µ . By comparing Fig 4.b with Fig 6 it can be seen that variations on the ν  
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parameter are one magnitude order faster in the Young-Michelson than in the Michelson 
interferometer for the same ranging of change of the OPL. It means that, meantime the ν  
parameter variations are registered on the hundreds for the OPL changin range from 0.02 
to 0,14 mm for the Michelson interferometer, for exactly the same OPL changing range 
the variations registered on the ν  parameter are on the tenths for the Young-Michelson 
interferometer. This behaviour persists as the slit pair separation increases, the Young’s 
fringes of the interferograms always exhibiting a high visibility and the loss of visibility 
in the Michelson’s fringes being apparent. 
 
Because of the above results, i.e. theirs independet behaviour for the same condictions, it 
seems to exist a separability of the parametes µ  and ν , and the spatial meaning of 

( )2211 ,;, yxyxν

(

, we conclude that these parameters denote different properties of the 
spatial coherence of the source. The primary correlation properties of the optical field, 
which are established by the module of the complex degree of spatial coherence, remain 
practically the same in all experimental situations. However, the decay of 

)2211 ,;, yxyxν  reveals a finer structure of the spatial coherence, which cause the loss 
of visibility in the Michelson’s fringes of the interferograms. 
 
As a consequence, both  and ν  should be used as 
descriptors of the spatial coherence properties of light sources revealed by the Young-
Michelson interferograms. 

( )21210 ; ηηξξµ −− ( 2211 ,;, yxyx )
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FIGURE  CAPTIONS 

 
Fig. 1: Experimental set-up of a Young-Michelson interferometer 
Fig. 2: Simulated intensity distributions of interferograms at the exit of a 

Young-Michelson interferometer 
Fig. 3: Fourier spectrum modula of the simulated interferograms in Fig.2 
Fig. 4: a. Geometrical parameters of the Young’s slit  pairs 

b. Graph of the fringe visibility for the compensated Michelson interferometer 
alone. 

Fig. 5: a) Intensity distribution of an experimental interferogram. 
b) Fourier spectrum module of a) 

Fig. 6: Graphs of µ  and ν  vs OPL difference for each Young’s slit pair: a) Y1   
b) Y2 and c) Y3 
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