A PROPÓSITO DE UN TEXTO PARA LA ENSEÑANZA DE LA QUÍMICA EDITADO A PRINCIPIOS DEL SIGLO XX EN COLOMBIA

por

Inés Bernal de Ramírez*

Resumen

Se presenta una reseña del texto y se examinan las diversas circunstancias que afrontaba la enseñanza de la química a principios del siglo XX y las que se viven hoy en Colombia. Se hacen algunas consideraciones y sugerencias sobre la metodología de la enseñanza de esta ciencia a nivel básico para el ciudadano común.

Palabras clave: Química, Enseñanza, Historia, R. Zerda Bayón.

Abstract

A review of the text is given and the diverse circumstances which confronted teaching of chemistry at the beginning of the 20th century is examined. Some suggestions are offered concerning the teaching of this science for ordinary people.

Key words: Chemistry, teaching, History, R. Zerda Bayon.

Introducción

La enseñanza de las ciencias en la escuela primaria es un medio para desarrollar en los niños el sentido de observación del mundo que los rodea y las habilidades de relacionar dichas observaciones para comprender problemas más complejos. Parece que esta preocupación de la formación e instrucción en el área de química del ciudadano común ya se manifestó como una prioridad en nuestro país a comienzos del siglo XX cuando el Ministerio de Instrucción Pública escogió a don Rafael Zerda Bayón como maestro de maestros en las Escuelas Normales de la época.

Don Rafael Zerda Bayón utilizó su gran erudición en el tema, adquirida por la práctica directa, para condensar lo que seguramente se encontraba diseminado en los tex-

* Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
tos de química, de higiene, de fisiología, de tecnología y de agricultura, y crear un texto que según sus palabras “obedece a un plan general de instrucción en este ramo de las ciencias, instruir a los habitantes de cada localidad de la República en el conocimiento de las materias primas de que disponen para el trabajo.

El mismo autor nos describe la intencionalidad de su obra así: “El presente libro está escrito para los principiantes que no tienen noción ni idea alguna de la Química. No está preparado para los sabios y eruditos sino para los alumnos de las escuelas. Solamente me ocupo de esta primera parte de la obra en el estudio de los elementos químicos que entran en la formación de los alimentos, y en la segunda parte de la química en relación con los alimentos y las bebidas, suprimiendo fórmulas, términos técnicos, y lo más posible, asimilando a nuestras costumbres y modo de ser ampliamente nacional, para no ser repulsivo a los estudiantes”.

Más adelante, en el prólogo, el autor manifiesta: “El indeclinable orden que me ha propuesto seguir en la descripción de cada uno de los cuerpos de que me ocupo, obedece a un plan general de instrucción en este ramo de las ciencias: instruir a los habitantes de cada localidad de la República en el conocimiento de las propiedades de las materias primas de que se dispongan para el trabajo, en la firme convicción de que el progreso hecho en las artes y en la industria, lo mismo en la paz que en la guerra, es dependientemente proporcional al mayor cúmulo de conocimientos experimentales adquiridos por los hijos de una nación, de las propiedades de la materia que dispone”.

Me pareció importante recoger el espíritu con que se concibió esta obra en los principios del siglo XX, en un país eminentemente rural que trataba de salir de un conflicto político interno que lo había dejado desangrado y empobrecido. Las pocas personas pudientes y cultas ansiaban que sus hijos se prepararan en el extranjero para que a su regreso colaboraran para sacar al país del atraso. Podemos deducir que uno de los jóvenes afortunados fue don Rafael Zerda, quien en su obra manifiesta haber sido alumno de don Ezequiel Uriocoecha, y que por sus apellidos se sabe que pertenecía a esa elite culta de la Bogotá de entonces.

En la misma obra recoge una síntesis biográfica del autor así: fue el doctor Rafael Zerda Bayón, “químico naturalista de la República de Colombia explorador científico de la región amazónica, colaborador del “Times” de Londres, inventor potenciado de instrumentos, aparatos y procedimientos técnicos y científicos por los gobiernos colombiano, británico, alemán, francés, belga, austriaco, italiano, ruso sueco, noruego y otras naciones europeas; ex catedrático de Ciencias Físicas y Naturales de la Universidad del Cauca, de Química en el Colegio de Nuestra Señora del Rosario, de Física y Química médica en la Facultad de Medicina, actual catedrático de Física y Química en la Universidad Republicana y miembro activo de la Sociedad de Naturalistas Colombianos; ex profesor de la Escuela Nacional de Telegrafía, etc.”, es decir, según esta presentación, uno de los más importantes químicos de su época en la Bogotá de principios del siglo XX.

El libro fue encomendado por el Ministerio de Instrucción Pública para suplir la necesidad de un texto de enseñanza de la Química que brindara la posibilidad de su estudio a las alumnas de las Escuelas Normales de la Nación para prepararlas como maestras en esta asignatura que fue oficialmente incluida en el plan de estudios de las escuelas en el año de 1920.

Estructura de la obra

La obra se divide en dos partes: En la primera el autor presenta una idea general de la química mostrando con fenómenos cotidianos cuál es su contexto e importancia definiéndolos así: “La Química trata de todas las transformaciones o cambios de carácter permanente que experimentan los cuerpos puestos en contacto; de la naturaleza de los cuerpos nuevos que se forman; de sus propiedades y de las aplicaciones que se dan en las artes, en la industria, en la economía doméstica, en la agricultura, en la medicina etc., dependiendo siempre sus aplicaciones de sus propiedades”. Los dos primeros capítulos nos dedican a introducir al estudiante en la estructura de la materia y de sus estados, y en el tercero dirige su atención a los elementos que entran en la composición de las materias alimenticias. Aprovecha este capítulo para introducir los conceptos de análisis y síntesis y presentar el fenómeno de la combustión dando indicaciones precisas sobre el comportamiento de la llama y su uso en las lámparas de los mineros.

El IV capítulo, titulado “Combinaciones del oxígeno y el hidrógeno”, introduce el concepto de combinación química y fuerza de afinidad relacionándola con la energía en sus diferentes manifestaciones: calórica, lumínica y eléctrica. El objetivo principal de estudio es el agua y principalmente el agua potable y su uso en la producción de alimentos y bebidas como la cerveza y la chicha. El capítulo V incluye una guía práctica para el análisis del agua indicando la forma de preparación de los reactivos, entre ellos la solución de jabón utilizada para determinar la dureza del agua, la tintura de “campeche” para indicar la presencia de bicarbonatos, la solución de “añil” como
indicador de la presencia de nitratos y la solución de "curtidera o corriaria de Fucha" como indicador ácido base. Por considerar de gran importancia para la salud pública el uso del agua, da indicaciones muy precisas para su depuración con filtros de carbón y alerta sobre el uso de la loza común barnizada con compuestos plomíferos; para reemplazar estos barnices propone otro con base en cal y bóxar que da terminado blanco a la loza y también da indicaciones para colorear este esmalte con compuestos que no son tóxicos.

Aconseja el uso de carbón de hueso muy calcinado para prevenir e impedir la corrupción de las aguas negrificadas y apagar brasas bien encendidas en el agua que se toma en los viajes para poder beberla sin peligro.

El capítulo V continúa con una descripción cualitativa del azote o nitrógeno y el ácido nítrico, el azufre y los ácidos sulfúrico, sulfuroso e hidrógeno sulfuroso, el cloro, ácido clorhídrico y el cloruro de sodio, el óxido de carbono y sus compuestos como la hulla, la «plombagina», y otras manifestaciones como el carbón de leña, el coque y el negro de humo y combinaciones con oxidógeno como el ácido carbónico y el óxido de carbón aprovechando para introducir los conceptos de "poder calorífico" y de "combustión". En seguida entra a describir los principales elementos importantes para la agricultura como son el potasio, el sodio, el calcio, el magnesio, y finalmente dedica atención al hierro. A través de este capítulo introduce al estudio de la química inorgánica organizando el conocimiento en la forma tradicional cualitativa que comprende:

a) **Estado natural:** Haciendo énfasis en sus manifestaciones en el territorio colombiano, merecen destacarse los comentarios de la presencia del azufre en el volcán del Puracé, en Buenavista en la vía del Quindío, como sulfuro de plomo en Ubalá, como sulfato de soda en Paipa y sulfato de magnesia en Ubaté. Atribuye la no existencia de peces en el río Cauca, desde la desembocadura del río Vinagre, a la presencia de ácido sulfúrico y anota la presencia de hidrógeno sulfurado en las aguas de Choachi.

b) **Propiedades físicas:** Su descripción nos permite en muchos casos deducir cuál es el nombre actual de la sustancia, como por ejemplo el de la "plombagina", "carbón de característica resbalosa y untuosa que sirve para fabricar lápices, como lubricante de partes metálicas y compactada sirve para conducir electricidad y calor", identificando de esta manera al grafito.

c) **Propiedades químicas:** Con ejemplos introduce los conceptos de oxidación, acidez y alcalinidad y describe la obtención de algunos elementos a partir de compuestos naturales por reacciones simples.

d) **Propiedades fisiológicas:** Los apartes correspondientes contienen interesantes observaciones de los peligros del mal uso de diferentes sustancias, así como acertados consejos prácticos para contrarrestar efectos desastrosos.

Continúa cada parte de este capítulo enriquecido con las propiedades organolépticas, la preparación y los usos naturales y artificiales de cada sustancia, permitiendo conocer el estado del conocimiento a principios del siglo XX y relacionándolo con la Colombia de esa época.

Desde el punto de vista didáctico en esta primera parte, al organizar el conocimiento en forma secuencial y enriqueciendo las descripciones con observaciones del medio natural, el profesor brindó la oportunidad de aprender los principios mínimos de la química inorgánica de entonces.

En la segunda parte muestra su gran capacidad pedagógica, pues selecciona, organiza y presenta toda la información fundamental de los alimentos y bebidas corrientes en el país, presentándola en forma amena y salpicada con comentarios de su propia experiencia, en tal forma que sin duda sus alumnos lograron asimilar este conocimiento y proyectarlo en su propio contexto.

Inicia la exposición definiendo los objetivos del análisis cualitativo y del análisis cuantitativo y de los que llama "principios inmediatos de los vegetales" que clasifica como azoados y no azoados, es decir, los que contienen nitrógeno y los que no lo contienen; reuniendo en el primer grupo los carbohidratos y las grasas, en el segundo las sustancias proteínicas y dejando en capítulo aparte las materias minerales, acercándose a la tradicional clasificación de los nutrientes que aceptamos hoy como "análisis próximo", ignorando solamente lo que conocemos como fibra bruta.

En la introducción ilustra también sobre la acción del calor, la luz, la electricidad y el aire y de algunos reactivos químicos sobre las materias alimenticias orientando la atención sobre los fenómenos de fermentación y putrefacción y dando consejos prácticos para evitar dichos fenómenos en diversos alimentos.

A los alimentos de origen animal les dedica ocho capítulos que inician con la apreciación de las transformaciones que sufren en las operaciones culinarias de pelado y cocción; en seguida hace unas breves consideraciones sobre la digestión en el hombre y la influencia que tienen...

...
QUÍMICA DE LOS ALIMENTOS

ADAPTADA A LAS NECESIDADES ECONÓMICAS E HIGIÉNICAS DE COLOMBIA

RAFAEL ZERDA BAYÓN

Bogotá—Imprenta del Comercio—1917

Figura 1. Portadilla del Libro “Química de los Alimentos” de Rafael Zerda Bayón

las preparaciones culinarias y las «causas físicas y morales» sobre dicha función natural.

Sigue una descripción de las necesidades alimenticias del hombre según su edad, el papel que desempeñan los alimentos y bebidas en la vida del hombre y los animales, y desemboca en la clasificación de los alimentos en plásticos (o azoados), respiratorios (o hidrocarbonados) y los mixtos como la leche; introduce el concepto de caloría y en unos párrafos muy simpáticos da muy buenos consejos para una alimentación racional.

A continuación dedica su atención a la carne, la sangre, la gelatina, la cola, los huevos, la leche y el queso, estudiando sus propiedades físicas, químicas y organolépticas, en ocasiones las fisiológicas y los usos y da conse-

jos para su conservación en aquella época en la cual no se contaba con los sistemas de refrigeración. Los capítulos más extensos son los relativos a la carne y a la leche, y en este último merece destacarse el peso lechero o lactodensímetro que en las propias palabras del autor, quien lo bautizó como “aerómetro de corcho”, es un “instrumento inventado para satisfacer la imperiosa necesidad económica e higiénica (de la determinación) de la densidad de la leche”.

En los usos de la gelatina sorprende la idea que se tenía entonces para obtener papel gelatina para usos tipográficos y de la mención del aparato poligráfico, hectógrafo o quirógrafo como precursor de las fotocopiadoras actuales.

En el aparte titulado: “La medicación del niño y del hombre por medio de la leche” expone una serie de consejos que designa él mismo como “Lactoterapia”, basados en observaciones directas del autor.

Entre los alimentos plásticos de origen vegetal estudia el gluten, la harina de trigo, el salvado, las pastas alimenticias y el pan exponiendo algunas consideraciones prácticas sobre el mejoramiento de la harina de trigo por medio de la agricultura y por medios químicos. Su lectura da idea de la riqueza agrícola existente entonces en la región del Tequendama que en la actualidad alberga una de las zonas industriales de Bogotá.

En los siguientes capítulos dirige su estudio al café, té, cacao y coca y a las raíces o bulbos alimenticios los cuales divide en: 1. Los que vuelven mucilaginoso el agua como la zanahoria, remolacha, salzísfs, chuyas y nábos. 2. Los que son particularmente acres o tienen olor penetrante como los ajos y las cebollas. 3. Las raíces alimenticias ricas en fécula como la papa, la Yuca, la arracacha, el malangay y las ibias, y 4. Plantas herbáceas como acelgas, cardos, coles, alcachofas.

En este capítulo hace la siguiente observación que me pareció importante: “Sabido es que los terrenos de Chocontá son una especialidad para el cultivo de los ajos, pudiendo ser una de las fuentes de riqueza y de prosperidad de esa región. ¿Cuál es la causa de esa especialidad? ¿Cuáles son las condiciones físicas de esa producción, la naturaleza de esos terrenos, su constitución química, condiciones climatéricas del lugar, etc., para poder buscar otro lugar igual o semejante para el cultivo de esos bulbos y aun en esa misma localidad, para mejorar esos productos? La contestación a estas preguntas es de competencia del Ministerio de Agricultura, debiendo preocuparnos más el estudio y mejora de nuestros productos naturales que el cultivo y aclimatación de vegetación.
extraña y aun completamente opuesta a la naturaleza física de nuestro medio. No tenemos conocimiento alguno en relación con nuestras producciones agrícolas, y sí pretendemos cultivar las ajenas”.

El capítulo XVIII lo dedica al estudio de los alimentos grasos de origen animal y vegetal: inicia con una exposición general sobre las propiedades organolépticas, físicas, fisiológicas y químicas de las grasas aprovechando para hablar del proceso de saponificación y la industria del jabón. Como alimentos usados estudia la manteca, la mantequilla y el aceite de oliva. En relación con el almacenamiento advierte de los peligros de las vasijas metálicas que contienen plomo, así como de las de cerámica con vidriados verdes o amarillos por contener este elemento y que puede llegar a contaminar los alimentos. En los cuatro capítulos siguientes presenta los alimentos respiratorios que ahora llamaríamos ricos en carbohidratos iniciando con el estudio de los almidones, la dextrina, el azúcar, el jarabe de azúcar y las mieles de caña y de abejas organizando la información en la forma que ha mantenido en toda la obra: estado natural, propiedades, obtención y usos.

Como continuación, en el capítulo XXIII, introduce el proceso de sacarificación para preparar las bebidas fermentadas como la cerveza, la chicha, el masato de maíz, de arroz y de ibías y el guarrus.

En el capítulo XXIV, al hablar de las frutas comunes en ese tiempo, presenta un trabajo realizado por él para obtener vino y brandy a partir de las “uvas de anís”. Habla de esa planta y llama la atención a los químicos del Ministe-
rio de Agricultura, quienes en su opinión “tienen la obligación de aplicar la ciencia al cultivo y desarrollo del trabajo, con los alimentos naturales del país y que disponen de las comodidades oficiales para hacer estudios completos con facilidad y provecho para el fomento de la agricultura, de la industria nacional y en beneficio del desarrollo de la riqueza pública” llamado hoy tan vigente como hace cien años. Además, con relación al estudio de las plantas nativas, sugiere que los “frutos y plantas que, sometidos a esculpulados estudios de laboratorio, hoy que se destruyen como estorbo y dificultad para los trabajos agrícolas, mañana habrá que cultivarlos con esmero entre las desamparadas breñas, por haber sido convertidos por la ciencia en fuentes inagotables de trabajo y bienestar”.

En relación con las frutas describe su composición química general y su transformación en espejuelos, jaleas y dulces, así como la obtención de esencias por destilación. Advierte también sobre el uso de colores de anilina y dice enfáticamente que deben prohibirlos, pues en su composición entran materias venenosas y recomienda colorear con plantas como la cúrcuma y el carmín de índigo para el verde o con la batalla, la cochinilla, el carmín o el achiote para los amarillos.

Según los principios constitutivos divide los frutos en ocho categorías las cuales por parecer curiosas me permito resumir así:

1. Carnosos y pulposos que contienen azúcar, ácidos como cítrico, malo y tartárico y que se comen crudos sin previa preparación, ejemplos: anones, nápoles, chirimoyas, mangos, guayabas, etc., y otras que se comen cocidas o en confite o ensaladas como los tomates, calabaza, pepino, papaya, etc., con poco valor nutritivo.

2. Azucarados poco ácidos, contienen menos agua y son más nutritivos que los anteriores, ejemplo: brevas maduras, dátilles, cocos, maracuyá, etc., se conservan mejor y se pueden convertir en “pasos”.

3. Azucarados amiláceos, en los cuales la fécula y el azúcar se encuentran unidos, tienen menos agua y son más nutritivos que los anteriores como los cachipayas, los frutos del árbol del pan y los plátanos, de los cuales dice que su harina podría ser una industria nacional.

4. Los frutos oleaginosos o aceitosos, como el cacao, la nuez, el maní, el ajonjolí y las aceitunas.

5. Los frutos astringentes ricos en tanino como el membrillo, los madroños, los mortiño y el café.

6. Los aromáticos, que contienen aceites volátiles, más o menos acris y picantes que se usan como condimentos: el anís, el cilantro, los cominos, el cardamomo, el ají, la pimienta.

7. Frutos y granos de las leguminosas que son las más nutritivas por contener “una sustancia semejante por sus propiedades a la albúmina o a la caseína de la leche” y “además contienen materia grasa, fosfato y otras sales minerales que pueden por esto suplir la falta de carne, ejemplo: los chuchapurrritos o balayés, los fríjoles, arvejas, habas peladas verdes, garbanzos y lentejas”. Además observa que tienen nudillos en las raíces que “fabrican nitro” combinando el “azio” (nitrógeno) del aire con el oxígeno y así explica la fertilidad que el cultivo de estas plantas transmite al terreno en que se siembra.

Los capítulos XXV y XXVI los dirige al estudio de los condimentos. En el primero presenta un estudio muy completo sobre el vinagre: estado natural, propiedades físicas, organolépticas, químicas, y fisiológicas e introduce los procedimientos más usuales para obtenerlo, las condiciones del proceso de fermentación y sus caracteres distintivos. Presenta también al ácido piroleñoso o vinagre obtenido por la acción del fuego sobre la leña matizando con observaciones prácticas para su purificación y posterior utilización en la industria, la medicina y la tintorería.

Habla también de otros condimentos clasificándolos en frutas ácidas (piñuelas, piña, moras), condimentos aromáticos (clove, laurel, canela, perejil, hinojo, salvia, azafán, etc.), condimentos aromáticos aces (pimienta blanca y negra), aces sulfurados (ajos, cebollas, cebollita, alcaparras, mostaza, rábanos, capuchine y asafetida).

En el capítulo XXVII da una descripción de alimentos concentrados fabricados “con el objeto de introducir en el organismo en el menor volumen y peso posible, la mayor cantidad, actualmente admisible, de materias alimenticias azoadas de fácil digestión” a las que se les atribuyen propiedades vigorizantes y curativas. Entre ellas merece destacarse la harina lacteada, la albumosa y el sosón, concentrados de proteínas de carne y sangre, la somatosa o polvo de pescado y otras por el estilo.

Como cosa curiosa incluye el maíz entre los alimentos concentrados, pues según su opinión llena satisfactoriamente las condiciones higiénicas, su potencia alimenticia es superior a las preparaciones usadas, es de limítada y fácil adquisición y manifiesta que “su producción sea definitivamente organizada por ley, fuera del impío alcance de la usura, para que pueda servir de alimento a la
clase proletaria”. Describe prolijamente la manufactura de la harina de maíz germinado que sirve como alimento sola o en preparaciones para los enfermos, convalecientes, niños y ancianos.

La tercera y última parte del libro contiene todo lo relativo a las bebidas alcohólicas, iniciando con la teoría y práctica de la fermentación y de la destilación. Aquí se encuentra una observación muy importante que creo resume la intencionalidad de la obra. Dice el autor: “Todo buen éxito de cualquier trabajo o industria depende de saber entender, interpretar y aplicar las leyes de la naturaleza en que se fundan, y son estas leyes bien interpretadas las que deben enseñarse en todos los establecimientos de instrucción pública elemental y secundaria”.

En este capítulo describe con lujo de detalles la preparación de la chicha a partir del maíz y de la sidra a partir de las manzanas de Duitama, de la cerveza, el vino y de algunas bebidas fermentadas y destiladas. Concluye el capítulo con la descripción de los efectos fisiológicos del alcohol y unas reflexiones muy sabias sobre el alcoholismo y sobre el tratamiento y curación de la infección social del alcohol.

Finalmente, describe la fabricación de un higrómetro ideado por él y hace énfasis en la importancia del uso de este instrumento para conocer las condiciones atmosféricas para el almacenamiento de algunas sustancias alimenticias.

Consagra la propuesta de este instrumento al doctor Ezequiel Uribechea, su maestro, de quien dice fue “un ilustre y abnegado sabio colombiano, que me enseñó a investigar y a saborear las delicias de la ciencia”.

La construcción del instrumento aprovecha la gran sensibilidad a la humedad que presentan “los pistillos filiformes de los frutos del género Erodium, de la familia botánica de las geraníaceas y conocido vulgarmente con el nombre de alfilerito”. Admira la inventiva del autor quien describe en detalle la construcción del instrumento, su calibración y la forma de uso, en forma tan clara que quienes quisieran reproducirlo seguramente lo podrían hacer dotando sus laboratorios con el aparato necesario para su docencia y aun dando ideas a los jóvenes para que al construirlo por sí mismos desarrollaran el gusto por la ciencia y obtuviesen la satisfacción de la propia realización.

Consideraciones finales

Seguramente este texto fue un soporte extraordinario para las primeras maestras quienes proyectaban su labor según el método de la enseñanza tradicional que ahora llamamos de “exposición verbal”, de innegable eficien-

cia, aun ahora que están en boga métodos de enseñanza.

al contextualizar sus enseñanzas en el diario vivir mostraba a las maestras cómo la química las rodeaba y no era necesario contar con sofisticados aparatos y laboratorios para mostrar su esencia a los educandos y abocándola como la ciencia que estudia los cambios o transformaciones de la materia.

Los ciudadanos comunes que recibieron las enseñanzas entonces, seguramente modificaron su percepción del mundo natural sin temores por lo que la química representa, y por el contrario llenos de expectativas por lo que sus conocimientos podían contribuir a favor del progreso individual y colectivo.

El texto es de un gran valor para hacernos comprender muchos aspectos de lo que era Colombia hace un siglo, sus costumbres, creencias culinarias e higiénicas, y también pone de presente el esfuerzo que animaba la preparación de los maestros de primaria y secundaria, como personas que tendrían la oportunidad de forjar las mentes juveniles e influir en el futuro de la Nación.

¿Qué impacto pudo tener este texto en la enseñanza de la Química en el país? Seguramente algunos de los alumnos de los maestros que lo estudiaron en la Normal y se prepararon para mostrar estos conocimientos dentro del contexto social del país, fueron los primeros estudiantes de las carreras de Farmacia y Química creadas en las décadas de los 30 y a principio de los 40. La marcada orientación hacia la industria de la carrera de química en la Universidad Nacional en sus inicios, muy posiblemente pudo ser consecuencia de la formación de quienes gestaron su creación.

Al terminar de leer esta obra le queda a uno la sensación de que algo sucedió que hizo virar los estudios químicos dejando de lado nuestro contexto nacional y restando importancia a sus aplicaciones, como si después del primer esfuerzo creativo de donde surgieron la industria petroquímica, las varias cementeras, las siderúrgicas, la planta de soda, etc., se hubiera sentido que todo estaba hecho y que ya la química y su investigación no eran necesarias. Además que con la florescencia del cultivo y procesamiento de los alucinógenos se ha satanizado todo lo relativo a la química, con las consecuencias mentales y materiales que conocemos.

La obra de Rafael Zerda Bayón, además, enfoca el estudio de los fenómenos diarios de la Química, como dice su autor: “Suprimiendo fórmulas, términos técnicos y, lo más posible, asimilándolo a nuestras costumbres y modo de ser ampliamente nacional, para no ser repulsivo a los estu-
diantes". Yo me pregunto cómo hacer para que el estudio de la química, actualmente fincado en la teoría atómica y en la estructura interna de la materia tan difíciles de imaginar o de relacionar con los fenómenos cotidianos, pueda volverse agradable por parte de nuestros maestros de educación básica y deje de ser el terror de nuestros estudiantes; valdría la pena examinar las diversas metodologías de enseñanza retomando lo bueno que ofrece el sistema expositivo verbal y combiniándolo con consideraciones y prácticas que de alguna manera ayuden a los alumnos a reflexionar sobre el fenómeno y a cambiar sus esquemas.

La Química un siglo después se ha enriquecido con numerosas teorías cuyo conocimiento permite explicar las propiedades de la materia y sus campos, sin embargo es innegable que su estudio es complicado para los alumnos, con un lenguaje completamente diferente que pretende explicar hechos y fenómenos que van más allá de la percepción submicroscópica y que requiere una buena dosis de imaginación para aceptarlos. Por eso es tan necesario que el profesor domine los conceptos que va a enseñar, sea capaz de ir despacio en su proceso para que logre afianzar en sus alumnos el conocimiento, repitiendo los conceptos, haciendo problemas numéricos o ejercicios diversos, matizando con relatos de experiencia propia, en fin, esforzándose para que los educandos encuentren en el aula lo que no pueden encontrar en un libro por bueno que sea y optimizando el tiempo de que dispone para lograr que nuestros jóvenes la acepten y la apropíen. Tal vez sea el momento de hacer de nuevo un viraje para que el estudio de las ciencias se enmarque dentro de nuestro contexto nacional y permita preparar las mentes jóvenes para resolver nuestros propios problemas y para que se inicie nuevamente una aceleración en el progreso colombiano con el despertar de las mentes juveniles.

Determinación botánica de algunas plantas mencionadas en el libro según: Enrique Pérez Arbeláez "Plantas Útiles de Colombia". Edición de Centenario, Quinta Edición Fondo FEN. Colombia, Bogotá, 1996.

<table>
<thead>
<tr>
<th>Ñutritivos</th>
<th>Planta</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maní</td>
<td>Arachis hypogea L.</td>
<td>(PA 777)</td>
</tr>
<tr>
<td>Ajonjí</td>
<td>Sesamum orientale</td>
<td>(PA 826)</td>
</tr>
<tr>
<td>Aceituna</td>
<td>Olea europaea L.</td>
<td>(PA 676)</td>
</tr>
<tr>
<td>Clavo</td>
<td>Eugenia</td>
<td></td>
</tr>
<tr>
<td>Laurel</td>
<td>Laurus nobilis</td>
<td></td>
</tr>
<tr>
<td>Canela</td>
<td>Cinnamomum</td>
<td></td>
</tr>
<tr>
<td>Perejil</td>
<td>Petroselinum vulgare</td>
<td></td>
</tr>
<tr>
<td>Salvia</td>
<td>Salvia</td>
<td></td>
</tr>
<tr>
<td>Ajos</td>
<td>Allium cepa</td>
<td></td>
</tr>
<tr>
<td>Cebolla</td>
<td>Allium sativum</td>
<td></td>
</tr>
<tr>
<td>Alcaparras</td>
<td>Capparisa sculenta</td>
<td></td>
</tr>
<tr>
<td>Rábanos</td>
<td>Raphanus vulgaris</td>
<td></td>
</tr>
<tr>
<td>Capuchine</td>
<td>Trapaelium majus</td>
<td></td>
</tr>
<tr>
<td>Maíz</td>
<td>Zea mays</td>
<td></td>
</tr>
<tr>
<td>Zanahoria</td>
<td>Daucus carota Linne</td>
<td>(PA 1030)</td>
</tr>
<tr>
<td>Cominos</td>
<td>Cominum cyminum L.</td>
<td>(PA 1029)</td>
</tr>
<tr>
<td>Remolacha</td>
<td>Beta vulgaris L.</td>
<td>(PA 858)</td>
</tr>
<tr>
<td>Café</td>
<td>Coffea arabica L.</td>
<td>(PA 906)</td>
</tr>
<tr>
<td>Chuguas</td>
<td>Oxalis tuberosuus Caldas</td>
<td></td>
</tr>
<tr>
<td>Cardamomo</td>
<td>Cardamomum</td>
<td></td>
</tr>
<tr>
<td>Acelgas</td>
<td>Beta vulgaris var. cicla</td>
<td>(PA 858)</td>
</tr>
<tr>
<td>Ají</td>
<td>Capsicum baccatum L; C. frutescens Wild; C. annuum (PA 982)</td>
<td></td>
</tr>
<tr>
<td>Coles</td>
<td>Tallos o berzas Brassica oleraceae L. var acephola (PA 308)</td>
<td></td>
</tr>
<tr>
<td>Fríjoles</td>
<td>Phaseolus vulgaris</td>
<td>(PA 807)</td>
</tr>
</tbody>
</table>

Campeche: Hematoxylon campechianum L. Es del sur de México de la América Central, Colombia, Venezuela, Guayanas y algunas Antillas. Se exploró mucho para extraer colorantes que fueron abandonados al inventarse las anilinas. (PA 216).

Uvas de anís: Macleania rupuestris, Cavendishia cordiflora (H.B.K) Hook. Especie cuyos frutos maduran en verde de sabor dulce áspero. (PA 353).

Cúrcuma: Curcuma longa L. Llamada también azafán de la India (PA 1067).
Carmín: *Rivina laevis* L.: Se halla espontánea en muchos bosques y cafelados y cultivada en los jardines europeos (PA 397).

Anones: *Anona squamata* Dunal (PA 67).

Níspero: *Achras zapota* L.

Membrillo: *Cydonia vulgaris* Pesson (PA 882).

Mortiño: *Hesperomeles goudotiana* (Ducq) Killejs (PA 885).

Cilantro o culantro: *Coriandrum sativum, Eryngium foetidum* L. (PA 1031).

Añil: *Indigofera anil* L. Fue antes de la fabricación de las anilinas base de una industria colombiana. Es uno de los colorantes vegetales más profusamente estudiados (Pérez Arbeláez 796).

Curtidera o Coraria de Fucha: *Coriaria thimifolia* H.B.K. Arbusto de los Andes, de hermoso aspecto que se usa como ornamental. De sus frutos se obtiene una tinta negra muy firme. Las hojas son tónicas y sirven para curtir cueros (PA 302).

Bejuco interesante de las selvas desde el Caquetá hasta el Amazonas, los indios preparan una bebida. Se le atribuyen efectos telepáticos adivinatorios y embriaguez deleznable (Pérez Arbeláez 581).

Salsifís: *Tragopogon porrifolium* Linne. Raíz comestible Pérez Arbeláez 291 (¿De origen europeo?)

Nabos: *Brassica napus* L. - De origen europeo. Fue el principal alimento de los pueblos antes de la difusión de la patata. Se aprovechan la raíz y las hojas... (Pérez Arbeláez 307).

Malangay: *Colocasia antiquorum* (Hort) Schott sinon. *C. esculenta* (L) Schott; *Arum colocasia* L; *Caladium esculentum* Ventenat. Tarro cultivado en Filipinas y que ha pasado a muchas regiones intertropicales (Pérez Arbeláez 100).

Ibias: *Oxalis tuberosus*: Planta indígena de cuyos tubérculos se alimentaron las razas de Colombia, Ecuador, Perú y Bolivia. C...... mucilago y algo de fécula. Se cultiva en tierras fríases. Sin tubérculos con lóbulos de yemas rosadas semejantes a los cubios (PA 731).

Cardos: *Cynara candunculus* Spr: Sus hojas verdes constituyen alimento beneficiando jóvenes (De origen europeo como las alcachofas que son del mismo género (PA 264).